Constrained Lipschitzian Error Bounds and Noncritical Solutions of Constrained Equations
نویسندگان
چکیده
منابع مشابه
Error bounds for rank constrained optimization problems
This paper is concerned with the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set R = { X ∈ X | rank(X) ≤ κ } and a closed convex set Ω. We establish the local (global) Lipschitzian type error bounds for estimating the distance from any X ∈ Ω (X ∈ X) to the feasible set and the solution set, respectively, under the calmness of a multifuncti...
متن کاملBackward Error Bounds for Constrained Least Squares Problems ∗
We derive an upper bound on the normwise backward error of an approximate solution to the equality constrained least squares problem minBx=d ‖b − Ax‖2. Instead of minimizing over the four perturbations to A, b, B and d, we fix those to B and d and minimize over the remaining two; we obtain an explicit solution of this simplified minimization problem. Our experiments show that backward error bou...
متن کاملError bounds for convex constrained systems in Banach spaces
In this paper, we first establish both primal (involving directional derivatives and tangent cones) and dual characterizations (involving subdifferential and normal cones) for the local (global) error bounds of constrained set-valued systems; as an application, we then derive both primal and dual characterizations for the local (global) error bounds of the constrained convex inequality systems ...
متن کاملConstrained Solutions of a System of Matrix Equations
We derive the necessary and sufficient conditions of and the expressions for the orthogonal solutions, the symmetric orthogonal solutions, and the skew-symmetric orthogonal solutions of the system of matrix equations AX B and XC D, respectively. When the matrix equations are not consistent, the least squares symmetric orthogonal solutions and the least squares skewsymmetric orthogonal solutions...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Set-Valued and Variational Analysis
سال: 2020
ISSN: 1877-0533,1877-0541
DOI: 10.1007/s11228-020-00568-8